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Symbolic Data Analysis can be defined as the extension of standard 
data analysis to more complex data tables. We illustrate the application 
of the Ascendant Hierarchical Cluster Analysis (AHCA) to a symbolic 
data set (with a known structure) in the field of the automobile industry 
(car data set), in which objects are described by variables whose values 
are intervals of the real data set (interval variables). The AHCA of thirty-
three car models, described by eight interval variables (with different 
scales of measure), was based on the standardized weighted 
generalized affinity coefficient, by the method of Wald and Wolfowitz. 
We applied three probabilistic aggregation criteria in the scope of the VL 
methodology (V for Validity, L for Linkage). Moreover, we compare the 
achieved results with those obtained by other authors, and with a priori 
partition into four clusters  defined by the category (Utilitarian, Berlina, 
Sporting and Luxury) to which the car belong. We used the global 
statistics of levels (STAT) to evaluate the obtained partitions.  
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INTRODUCTION 

The purpose of Cluster Analysis is to identify groups (clusters) of entities (data units/objects or 
variables), homogeneous and, preferably, well separated, on the basis of similarities or 
dissimilarities between these entities. There are two main classes of clustering methods: 
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hierarchic and non-hierarchic methods. The first ones return a nested sequence of partitions 
(hierarchical structure). On the other hand, the non-hierarchical methods seek to obtain a single 
partition of the input data into an appropriate number of clusters. The last ones usually 
produce clusters by (locally) optimizing an adequacy criterion. In this paper, we will focus on 
hierarchic agglomerative methods (Ascendant Hierarchical Cluster Analysis - AHCA).  
With the advent of computers, it is possible to synthesize data in terms of their most relevant 
concepts, which may be described by different types of complex data (generalizations of 
classical data types), also known as symbolic or complex data.  In a symbolic data table, rows 
correspond to data units (frequently, groups of individuals) and columns to variables. Each 
entry in the table can contain just one value or several values, such as subsets of categories, 
intervals of the real data set, or frequency distributions (Bock and Diday, 2000; Bacelar-Nicolau, 
2000, 2002; Diday and Noirhomme-Fraiture, 2008; Bacelar-Nicolau et al., 2009, 2010, 2014a, 
2014b; Sousa et al., 2010, 2013a, 2014; Doria et al., 2013). Some similarity and dissimilarity 
measures for the case of Symbolic data can be found, for instance, in Bock and Diday (2000).  
The recording of interval data has become a more frequent practice with the recent advances in 
database technologies (Souza and De Carvalho, 2004). Some dissimilarity measures for interval 
data can be found in the literature (see f.i. Chavent and Lechevallier, 2002; Chavent et al., 2003; 
Souza and De Carvalho, 2004; De Carvalho et al., 2006a, 2006b), as well as some similarity 
measures which are capable of dealing with the particular case of interval data (e.g. Bacelar-
Nicolau et al., 2009, 2010, 2014a, 2014b). In this paper, we face the problem of clustering data 
units described by variables whose values are intervals of the real data set (interval data), with 
different scales of measures. To show the usefulness of the standardized weighted generalized 
affinity coefficient by the method of Wald and Wolfowitz (Bacelar-Nicolau, 2000; Bacelar-
Nicolau et al., 2009, 2010;  Sousa et al., 2013a), for this type of data, a well-known interval data 
set (with a known structure) was considered. The AHCA was based on three probabilistic 
aggregation criteria (AVL, AV1, and AVB) included in a parametric family of methods in the 
context of the VL methodology (e.g. Nicolau, 1983; Bacelar-Nicolau, 1988; Nicolau and Bacelar-
Nicolau, 1998; Lerman, 1972, 1981). In addition, we compare the achieved results with those 
obtained by other authors (e.g., De Carvalho et al., 2006a, 2006b; Souza et al., 2007), and with a 
priori partition. The validation of the obtained partitions is based on the global statistics of 
levels (STAT), as proposed by Lerman (1970, 1981) and Bacelar-Nicolau (1980, 1985). 
The paper is organized as follows: the second section is related to the models of AHCA in the 
field of the Symbolic Data Analysis used in the present work. More emphasis is given to the 
weighted generalized affinity coefficient, and to the corresponding asymptotic standardized 
weighted generalized coefficient, under a permutational reference hypothesis based on the 
limit theorem of Wald and Wolfowitz. We present, in the third section, the best results 
obtained with the application of the AHCA to a data set (with a known structure) in the field of 
the automobile industry (car data set), in which objects (thirty-three car models) are described 
by eight variables whose values are intervals of the real line (interval variables). Finally, the 
fourth section contains some concluding remarks about the work and its results. 

ASCENDANT HIERARCHICAL CLUSTER ANALYSIS OF SYMBOLIC DATA UNITS 

The AHCA (agglomerative hierarchical methods) usually start with every single object in 
a single cluster (singleton). The algorithm successively merges the most similar clusters 
together until the entire set of elements to classify becomes one group. In this work, we 
use a similarity measure, called standardized weighted generalized affinity coefficient, by 
the method of Wald and Wolfowitz, which is described in the present section. 
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Weighted Generalized Affinity Coefficient for the case of Interval Data  
From the affinity coefficient between two discrete probability distributions proposed by 
Matusita (1951) as a similarity measure for comparing two distribution laws of the same type, 
Bacelar-Nicolau (e.g. 1980, 1988) introduced the affinity coefficient, as a similarity coefficient 
between pairs of variables or of subjects in cluster analysis context (corresponding to pairs of 
columns or rows of a data matrix). A theoretical study of this coefficient and their asymptotic 
normal distributions may be found, e.g., in Bacelar-Nicolau (1980, 1988). Moreover, some 
simulation studies (Sousa, 2005; Sousa et al., 2013b) shown that the convergence of the affinity 
coefficient for the normal distribution is relatively fast (in general from sample sizes above 20). 
Afterwards, Bacelar-Nicolau extended that coefficient to different types of data, including 
complex and heterogeneous data (Bacelar-Nicolau, 2000, 2002; Bacelar-Nicolau et al., 2009, 
2010, 2014a, 2014b). The so-called weighted generalized affinity coefficient, 𝑎 𝑘, 𝑘′ , between a 
pair of statistical data units,  𝑘 and 𝑘 ′   𝑘, 𝑘 ′ = 1, … , 𝑁 , is an extension of the affinity coefficient 
for the case of symbolic data, and may be defined as follows:  
 

𝑎 𝑘, 𝑘′ =  𝜋𝑗  𝑎𝑓𝑓 𝑘, 𝑘′; 𝑗 
𝑝
𝑗 =1 =  𝜋𝑗   

𝑥𝑘𝑗 ℓ

𝑥𝑘𝑗 
∙
𝑥𝑘 ´𝑗 ℓ

𝑥𝑘 ´𝑗 

𝑚 𝑗

ℓ=1

𝑝
𝑗=1     (1) 

 

where: 𝑎𝑓𝑓 𝑘, 𝑘′; 𝑗  is the generalized local affinity between 𝑘 and 𝑘′ over the jth variable, 
mj is the number of modalities of the sub-table associated to the jth variable, 𝑥𝑘𝑗 ℓ  is the 

number of individuals (in the unit 𝑘) which share category ℓ of variable Yj, 𝑥𝑘𝑗  =  𝑥𝑘𝑗 ℓ

𝑚 𝑗

ℓ=1
, 

𝑥𝑘´𝑗 =  𝑥𝑘´𝑗ℓ

𝑚 𝑗

ℓ=1
 and 𝜋𝑗  are weights such that 0 ≤  𝜋𝑗 ≤ 1,  𝜋𝑗 = 1. Either the local 

affinities or the whole coefficient given by formula (1) assume values in the interval [0,1] 
(e.g. Bacelar-Nicolau, 2002; Bacelar-Nicolau  et al. 2009). 
The coefficient defined by formula (1) is suitable when mixed variables types are present 
in a database, often a large one, since the same coefficient can deal with different variables 
types (for details, see Bacelar-Nicolau et al., 2009, 2010). In the particular case of symbolic 
variables of interval type, Bacelar-Nicolau has defined the weighted generalized affinity 
coefficient, as is described below (for details, see Bacelar-Nicolau et al., 2009, 2010, 2014b). 
Given N data units described by p interval variables, Yj,  with j=1, …, p, and a data matrix, 

as Table 1, where each cell (𝑘, j) contains an interval 𝐼𝑘𝑗 =  𝑎𝑘𝑗 , 𝑏𝑘𝑗   of the real data set, 

with k =1,…,N and j=1,…,p, the weighted generalized affinity coefficient between a pair of 
data units, 𝑘 and 𝑘′ 𝑘, 𝑘 ′ = 1, … , 𝑁 , can be expressed by: 
 

𝑎 𝑘, 𝑘′ =  𝜋𝑗
𝑝
𝑗 =1  .

 𝐼𝑘𝑗 ∩𝐼𝑘 ´𝑗  

  𝐼𝑘𝑗  . 𝐼𝑘 ´𝑗  
 ,    (2) 

 

where 𝑘 and 𝑘 ′ 𝑘, 𝑘 ′ = 1, … , 𝑁  are a pair of data units,  𝐼𝑘𝑗  ,  𝐼𝑘´𝑗   and  𝐼𝑘𝑗 ∩ 𝐼𝑘′𝑗     represent, 

respectively, the ranges of the intervals 𝐼𝑘𝑗 , 𝐼𝑘´𝑗  and 𝐼𝑘𝑗 ∩ 𝐼𝑘′𝑗 . Bacelar-Nicolau called the 

coefficient defined by formula (2) a generalized Ochiai coefficient for interval data, which is 

associated with a 22 generalized contingency table that contains interval ranges instead 

of the usual cardinal numbers of any simple 22 contingency table.  
 

Table I: Symbolic data table (interval data) 
 𝑌1 ⋯ 𝑌𝑗  ⋯ 𝑌1𝑝  

1 𝐼11  ⋯ 𝐼1𝑗  ⋯ 𝐼1𝑝  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝐾 𝐼𝑘1 ⋯ 𝐼𝑘𝑗  ⋯ 𝐼𝑘𝑝  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝑁 𝐼𝑁1 ⋯ 𝐼𝑁𝑗  ⋯ 𝐼𝑁𝑝  
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It was demonstrated that formula (2) arises as a particular case of formula (1) when we are 
dealing with variables of interval type (see e.g. Bacelar-Nicolau et al., 2009, 2010). Taking 
into account the decomposition of each interval into mj elementary and disjoint intervals, 

 𝐼𝑗ℓ: ℓ = 1, ⋯ , 𝑚𝑗  , we obtain the following equalities: 

 

𝑎 𝑘, 𝑘′ =  𝜋𝑗𝑎𝑓𝑓 𝑘, 𝑘′; 𝑗 
𝑝
𝑗 =1 =  𝜋𝑗

𝑝
𝑗=1  .   

𝑥𝑘𝑗 ℓ

𝑥𝑘𝑗 
.
𝑥𝑘 ′𝑗 ℓ

𝑥𝑘 ′𝑗 

𝑚 𝑗

ℓ=1
=  𝜋𝑗

𝑝
𝑗 =1  .

 𝐼𝑘𝑗 ∩𝐼𝑘 ´𝑗  

  𝐼𝑘𝑗  . 𝐼𝑘 ´𝑗  
, 

 

with 𝑥𝑘𝑗 ℓ =  𝐼𝑘𝑗 ∩ 𝐼𝑗ℓ , where  represents the interval range, 𝑥𝑘𝑗 ℓ =  𝐼𝑗ℓ    if   𝐼𝑘𝑗  𝐼𝑗ℓ = 𝐼𝑗ℓ,  

and 𝑥𝑘𝑗 ℓ = 0, otherwise,  πj  are weights such that 0 ≤  πj ≤ 1,  πj = 1, 𝑥𝑘𝑗  =  𝑥𝑘𝑗 ℓ

𝑚 𝑗

ℓ=1
, 

𝑥𝑘´𝑗 =  𝑥𝑘´𝑗ℓ

𝑚 𝑗

ℓ=1
, and  𝐼𝑘𝑗  ,  𝐼𝑘´𝑗   and  𝐼𝑘𝑗 ∩ 𝐼𝑘′𝑗    are, respectively, the ranges of the intervals  

𝐼𝑘𝑗 , 𝐼𝑘´𝑗   and   𝐼𝑘𝑗 ∩  𝐼𝑘′𝑗 . Therefore, the weighted generalized affinity coefficient 𝑎 𝑘, 𝑘′  

between a pair  𝐼𝑘𝑗 , 𝐼𝑘′𝑗   of intervals  𝑘, 𝑘 ′ = 1, … , 𝑁 , may be computed in two different 

ways, either by using the formula (1) or, alternatively, by using  the formula (2).  
 

Asymptotic Standardized Weighted Generalized Affinity Coefficient 
The values of the proximity measures and of the clustering results are affected by the 
scales of the variables. Often, a standardization performed prior to the clustering process 
improves the performance of the clustering method (De Carvalho et al., 2006a).  
Considering a permutational reference hypothesis based on the limit theorem of Wald and 
Wolfowitz (Fraser, 1975), the random variable associated to 𝑎𝑓𝑓 𝑘, 𝑘 ′ ; 𝑗  follows the 
asymptotic normal distribution, and an associated standardized coefficient, 𝑎𝑊𝑊 𝑘, 𝑘′ , 
may be used, instead of  𝑎 𝑘, 𝑘′   (see f.i. Bacelar-Nicolau, 1988; Bacelar-Nicolau et al., 2009, 
2010, 2014a).  
From the decomposition of each interval into a suitable number of elementary intervals, as 
referred above, the local standardized weighted generalized affinity coefficient by the method 

of Wald and Wolfowitz, 𝑎𝑓𝑓𝑊𝑊
∗  𝐼𝑘𝑗 , I𝑘′𝑗 ; 𝑗  or, more concisely, 𝑎𝑓𝑓𝑊𝑊

∗  𝑘, 𝑘 ′ ; 𝑗 , between a pair 

 𝐼𝑘𝑗 , 𝐼𝑘′𝑗    of intervals   𝑘, 𝑘 ′ = 1, … , 𝑁 , over the jth variable, is given by the formula: 

 

𝑎𝑓𝑓𝑤𝑤
∗  𝑘, 𝑘 ′ ; 𝑗 =  𝑚𝑗 − 1

  𝑥𝑘𝑗 ℓ.𝑥𝑘 ′𝑗ℓ

𝑚 𝑗
ℓ=1 −

1

𝑚𝑗
  𝑥𝑘𝑗 ℓ

𝑚 𝑗
ℓ=1

  𝑥𝑘′ 𝑗ℓ

𝑚 𝑗
ℓ=1

  𝑥𝑘𝑗 −
1

𝑚𝑗
   𝑥𝑘𝑗 ℓ

𝑚 𝑗
ℓ=1  

2

  𝑥𝑘′ 𝑗−
1

𝑚𝑗
   𝑥𝑘′ 𝑗ℓ

𝑚 𝑗
ℓ=1  

2

 

         (3) 

 
where, the notations are the same as those in the previous subsection. Finally, the 
standardized weighted generalized affinity coefficient by the method of Wald and 
Wolfowitz is given by the formula: 
 

𝑎𝑊𝑊 𝑘, 𝑘′ =  𝜋𝑗  𝑎𝑓𝑓𝑊𝑊
∗  𝑘, 𝑘′; 𝑗 

𝑝
𝑗=1                                        (4) 

 
where πj are weights such that 0 ≤  πj ≤ 1,  πj = 1, and the local asymptotic normal affinity 

coefficient 𝑎𝑓𝑓𝑊𝑊
∗  𝑘, 𝑘 ′ ; 𝑗  also satisfies the main properties of a similarity coefficient (Bacelar-

Nicolau et al., 2010). Furthermore, 𝑎𝑊𝑊 𝑘, 𝑘′  allows us to define a probabilistic coefficient in 
the scope of the VL methodology, in the line started by Lerman (1970, 1972, 1981) and 
developed by Bacelar-Nicolau (e.g. 1980, 1985, 1987, 1988) and Nicolau (e.g. 1983, 1998).  
Given the affinity similarity matrix, a data set can be classified through classical aggregation 
criteria or probabilistic ones (Bacelar-Nicolau et al., 2009, 2010, 2014b; Sousa et al., 2013a). In the 
present work, we used probabilistic aggregation criteria under the VL probabilistic approach.  
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An important step in Cluster Analysis is to determine the best number of clusters. The 
values of validation indexes obtained from the values of the similarity (or dissimilarity) 
matrix between elements can be calculated, also in the case of symbolic data (Sousa, 2005; 
Sousa et al., 2010, 2013a, 2014). Here we use, as mentioned above, the global statistics of 
levels STAT (e. g. Lerman 1970, 1981; Bacelar-Nicolau, 1980, 1985; Sousa et al., 2014) as the 
validation index to find the obtained best partitions. 

EXPERIMENTAL RESULTS: THE CAR DATA SET 

The analyzed symbolic data matrix (see Table II) is referred in the literature of the 
symbolic data analysis (e. g. De Carvalho et al, 2006a, 2006b; Souza et al, 2007) and 
contains thirty-three car models (complex data units) described by eight interval variables 
(Price, Engine Capacity, Top Speed, Acceleration, Step, Length, Width and Height), two 
categorical non-ordered multi-valued variables (Alimentation and Traction) and one 
nominal (Car Category). This last variable, with the modalities Utilitarian, Berlina, Sporting 
and Luxury, reflects the a priori partition (indicated by the suffix attached to the car model 
denomination) into four groups according to the category (De Carvalho et al., 2006a, 
2006b), as follows: Utilitarian: {1-Alfa 145/U; 5-Audi A3/U; 12-Punto/U; 13-Fiesta/U; 17-
Lancia Y/U; 24-Nissan Micra/U; 25-Corsa/U; 28-Twingo/U; 29-Rover 25/U; 31-Skoda 
Fabia/U}; Berlina: {2-Alfa 156/B; 6-Audi A6/B; 8-BMW serie 3/B; 14-Focus/B; 21-
Mercedes Classe C/B; 26-Vectra/B; 30-Rover 75/B; 32-Skoda Octavia/B}; Sporting: {4-
Aston Martin/S; 11-Ferrari/S; 15-Honda NSK/S; 16-Lamborghini/S; 19-Maserati GT/S; 
20-Mercedes SL/S; 27-Porsche/S}; Luxury: {3-Alfa 166/L; 7-Audi A8/L; 9-BMW serie 5/L; 
10-BMW serie 7/L}. 
Table II shows part of the symbolic data matrix. The complete data set is included in the 
SODAS (Symbolic Official Data Analysis System) software. In this work, the eight interval 
variables have been considered for the AHCA of the thirty-three car models based on the 
standardized weighted generalized affinity coefficient by the method of Wald and 
Wolfowitz (see the precedent section). The measure of comparison between elements has 
been combined with three probabilistic aggregation criteria, AVL, AV1, and AVB (Bacelar-
Nicolau, 1988; Nicolau, 1983; Nicolau and Bacelar-Nicolau, 1998). 

 
Table II: Symbolic data matrix - Car data set 

Model Price Engine Capacity Alimentation Traction . . . Height Category 

Alfa 145 [27806, 33596] [1370, 1910] Gasoli, Diese Anter . . . [143, 143] Utilit 
Alfa 156 [41593, 62291] [1598, 2492] Gasoli Anter . . . [142, 142] Berlina 

. . . . . . . . . . . . . . . . . . . . . . . . 
Passat [39676, 63455] [1595, 2496] Gasoli, Diese Anter, Integ . . . [146, 146] Luxo 

 
Before calculating the coefficient given by formula (4), the domains of each variable were 
decomposed in a suitable number of elementary intervals (respectively, 65, 52, 46, 57, 30, 32, 
24 and 12 elementary intervals, for the variables Price, Engine Capacity, Top Speed, Acceleration, 
Step, Length, Width and Height). Consequently, we obtained a new data matrix, subdivided 
into eight subtables (one for each variable), which contain a decomposition of the respective 
initial intervals into elementary intervals. Table III illustrates the decomposition 
corresponding to the variable Price. In that case, once sorted (in ascending order) the values 
corresponding to the lower and upper boundaries of the 33 intervals (corresponding to the 
car models), we considered the subintervals defined only by the distinct values.  
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Table III: Decomposition in elementary intervals – Variable Price 
Car Model Price [16992, 18492] ⋯ [262500, 276792] [276792, 389405] ⋯ [423000, 460000] 

1/U [27806, 33596] 0 ⋯ 0 0 ⋯ 0 
2/B [41593, 62291] 0 ⋯ 0 0 ⋯ 0 
3/L [64499, 88760] 0 ⋯ 0 0 ⋯ 0 
4/S [260500, 460000] 0 ⋯ 14292 112613 ⋯ 37000 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

9/L [70292, 198792] 0 ⋯ 0 0 ⋯ 0 
10/L [104892, 276792] 0 ⋯ 14292 0 ⋯ 0 
11/S [240292, 391692] 0 ⋯ 14292 112613 ⋯ 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
31/U [19519, 32686] 0 ⋯ 0 0 ⋯ 0 
32/B [27419, 48679] 0 ⋯ 0 0 ⋯ 0 
33/L [39676, 63455] 0 ⋯ 0 0 ⋯ 0 

 
Note that in the column corresponding to the variable Price there are not initial intervals 
with identical lower and upper boundaries. Contrary, in the columns associated to other 
variables there are intervals in such conditions. We deal with this situation replacing these 
intervals by transformed intervals obtained from the first ones, by subtracting and adding 
0.5, respectively to the lower and upper boundaries. Table IV exemplifies the procedure 
for the Variable Height.  

 
Table IV: Decomposition in elementary intervals – Variable Height 

Car Model Height Transformed  
intervals 

[110.5, 111.5] [123.5, 128.5] ⋯ [145.5, 146.5] [147.5, 148.5] 

1/U [143, 143] [142.5, 143.5] 0 0 ⋯ 0 0 
2/B [142, 142] [141.5, 142.5] 0 0 ⋯ 0 0 
3/L [142, 142] [141.5, 142.5] 0 0 ⋯ 0 0 
4/S [124, 132] [123.5, 132.5] 0 5 ⋯ 0 0 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

9/L [144, 144] [143.5, 144.5] 0 0 ⋯ 0 0 
10/L [143, 143] [142.5, 143.5] 0 0 ⋯ 0 0 
11/S [130, 130] [129.5, 130.5] 0 0 ⋯ 0 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ 
31/U [145, 145] [144.5, 145.5] 0 0 ⋯ 0 0 
32/B [143, 143] [142.5, 143.5] 0 0 ⋯ 0 0 
33/L [146, 146] [145.5, 146.5) 0 0 ⋯ 1 0 

 
According to the STAT index, the selected (best) partition is the partition into six clusters 
(STAT=14.7191), which was obtained at level 27 by the AVL method:  C1:{1/U, 14/B, 26/B, 
32/B, 2/B, 33/L, 5/U, 8/B, 30/B, 3/L, 18/L};  
C2:{6/B, 21/B, 7/L, 9/L, 22/L, 10/L, 23/L, 20/S}; C3:{12/U, 31/U, 29/U, 24/U, 25/U, 
17/U, 13/U, 28/U}; C4:{4/S, 11/S, 19/S, 27/S}; C5:{15/S}; C6:{16/S}. On the other hand, 
from the dendrogram provided by AVL method (see Figure 1), we can see four well-
defined clusters. Table V contains the main clusters that we can see from the dendrograms 
provided by the applied methods (AVL, AV1, and AVB). In this table, we present for each 
cluster their individuals and respective a priori class labels.  
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Figure 1: Dendrogram obtained with AVL (levels 21 to 32)  

 
The four clusters provided by the AVL method are in accordance with the ones identified by 
other authors (e.g., De Carvalho et al., 2006a, 2006b; Souza et al., 2007), using different 
standardization methods, except with regard to the objects (car models) 20/S and 21/B (see 
Table V). In particular, the clusters {6/B, 21/B, 7/L, 9/L, 22/L, 10/L, 23/L, 20/S} and {12/U, 
31/U, 29/U, 24/U, 25/U, 17/U, 13/U, 28/U} were found in all obtained dendrograms. Note 
that the cluster {12/U, 31/U, 29/U, 24/U, 25/U, 17/U, 13/U, 28/U}, containing most 
Utilitarian cars, also was identified by the referred authors. In addition, it appears that the 
partition into four clusters provided by AVL is compatible with the a priori partition defined by 
the variable Car category. This fact points out to the satisfactory performance of the 
standardized weighted generalized affinity coefficient, by the method of Wald and Wolfowitz.  
 

Table V: Clustering results for the Car data set 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

aww +AVL 1/U, 14/B,  
26/B, 32/B,  
2/B, 33/L,  
5/U, 8/B,  
30/B, 3/L,  
18/L 

6/B, 21/B,  
7/L, 9/L,  
22/L, 10/L,  
23/L, 20/S 

12/U,  31/U,  
29/U, 24/U,  
25/U, 17/U,  
13/U, 28/U 

4/S, 11/S,  
19/S, 27/S,  
15/S, 16/S  

   

aww +AV1 26/B, 32/B,  

2/B, 33/L,  
5/U, 8/B,  
30/B 

6/B, 21/B,  

7/L, 9/L,  
22/L, 10/L,  
23/L, 20/S 

12/U,  31/U,  

29/U, 24/U,  
25/U, 17/U,  
13/U, 28/U 

4/S, 11/S,  

19/S, 27/S  

15/S , 16/S 1/U, 14/B  3/L, 18/L 

aww +AVB 26/B, 32/B,  
2/B, 33/L,  
5/U, 8/B,  
30/B, 3/L,  
18/L 

6/B, 21/B,  
7/L, 9/L,  
22/L, 10/L,  
23/L, 20/S 

12/U,  31/U,  
29/U, 24/U,  
25/U, 17/U,  
13/U,  28/U 

4/S, 11/S,  
19/S, 27/S 

15/S, 16/S 1/U, 14/B  

Other authors 
(standardizati 
on methods) 

1/U, 14/B,  
26/B, 32/B,  
2/B, 33/L,  
5/U, 8/B,  
30/B, 3/L,  
18/L, 21/B 

6/B, 7/L,  
9/L, 22/L,  
10/L, 23/L  

12/U,  31/U,  
29/U, 24/U,  
25/U, 17/U,  
13/U, 28/U 

4/S, 11/S,  
19/S, 27/S,  
15/S, 16/S,  
20/S  

   

CONCLUDING REMARKS 

It is important to stress that the weighted generalized affinity coefficient, 𝑎 𝑘, 𝑘′ , between 

a pair  𝐼𝑘𝑗 , 𝐼𝑘′𝑗   of intervals  𝑘, 𝑘 ′ = 1, … , 𝑁 , may be computed from the formulae (1) or (2). 



Sousa et al: On Clustering Interval Data with Different Scales of Measures: Experimental Results                                                                                       (17-25) 

Page 24                                                                                     Copyright © CC-BY-NC 2014, Asian Business Consortium | AJASE 

 

The decomposition of each interval into elementary intervals is mainly interesting in the 
case of the standardized weighted generalized affinity coefficient, 𝑎𝑊𝑊 𝑘, 𝑘′ , due to the 
associated reference hypothesis based on the limit theorem of Wald and Wolfowitz. The 
use of the similarity measure 𝑎𝑊𝑊 𝑘, 𝑘′ , instead of the 𝑎 𝑘, 𝑘′ , allows us to work with 
comparable values of the similarity measure, which are realizations of random variables 
with the same distribution (asymptotically normal standard).  
In this paper, we faced the problem of clustering interval data, with different scales of 
measures (case of the analyzed data set), in the scope of the VL methodology. The obtained 
results with the application of our methods to these data are congruent with the ones 
reported by other authors. Indeed, several applications of the used methodology to various 
data sets (with a known structure) have shown that the used methods are very promising, 
that is, they reproduce in a satisfactory way the proprieties of the data structures. 
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